Requirements for EGLdoc

Draft: 5 July 2012

Ben Margolis, Advisory Writer, IBM

Copyright © IBM Corporation and others 2012. For full details, see the “Legal” topic at http://www.eclipse.org.
Also see the Trademarks section on page 29 of this document.

http://www.eclipse.org/

Table of Contents

T (o U T3 1 o o TR RPPPPPP 4
INPUL AOC COMPONENTS.......eeiiiii e e e e et e e e e e e e e e e e e s eeanns 4
OUIPUL FOIMAL. ... e e e e e e e ennn e e e s 5

2T 3ROSR 6

[111 0 | PP 11
o o £ USRS 12

Records other than annotations..............ooueiii i 12
Annotations other than StereotypPes.oooeiviiiiiiii i 16

1 (=T =T0] 1Y 01T TP PP PSPPI 21

E XAl (Y PES. .. et a e aae 27
T T3 0] 3PP 28

B = Lo [T 0 = 5 G P 29

Introduction

EGLdoc has the following aspects:

* Processes to copy doc from EGL code into a separate output.
* Rules for EGL developers to follow when writing the doc.

Any number of output formats might be supported. The initial requirement is to be compliant
with XHTML 3.2. DITA might be of special interest in the next year or two.

The idea for EGLDoc is based on Javadoc™, which is described here:

javadoc - the Java APl Documentation Generator
(http://w3.java.ibm.com/java/docs/java7/technotes/tools/windows/javadoc.html)

Proposed Javadoc tags
(http://java.sun.com/j2se/javadoc/proposed-tags.html)

The current spec relies on those descriptions, as customized for EGL.

Input doc components
The input doc has the following main components:

* QOverview comment file

Purpose: to describe an application or a group of EGL packages. One possible output is
similar to this:

http://docs.oracle.com/javase/7/docs/api/overview-summary.html

The input file is HTML, with <htmlI>, a subordinate <body> tag, and an optional set of
overview annotations that are described later.

Javadoc repeats the first sentence at the top and bottom of the output page. Seems
wrong.

* Package comment file
Purpose: to describe an EGL package. One possible output is similar to this:

http://docs.oracle.com/javase/7/docs/api/java/math/package-summary.html

http://docs.oracle.com/javase/7/docs/api/java/math/package-summary.html
http://docs.oracle.com/javase/7/docs/api/overview-summary.html
http://java.sun.com/j2se/javadoc/proposed-tags.html
http://java.sun.com/j2se/javadoc/proposed-tags.html
http://w3.java.ibm.com/java/docs/java7/technotes/tools/windows/javadoc.html
http://w3.java.ibm.com/java/docs/java7/technotes/tools/windows/javadoc.html

The input file is equivalent to the package-info.java file, which begins with a comment and
ends with a package statement. The comment has an initial sentence with no annotations
and can have additional content with an optional set of package annotations.

Again, Javadoc repeats the first sentence at the top and bottom of the output.

* Miscellaneous files

Purpose: To provide content to the other files so that the output can include graphics, as
well as more volume than is appropriately stored in an EGL source file.

¢ Comments embedded in source code

Purpose: To document specific types, variables, constants, functions, and function
prototypes.

The input is composed of a main comment followed by a tag section. The main comment
begins with the start characters “/**” and must not precede an import statement.

A “block tag” is processed specially only if its @ symbol is first on the line except for any
appropriately formatted start characters, white space, and asterisks. An “in-line tag” is
embedded in curly braces.

Output format

The output for Javadoc can be appropriate for a multi-frame HTML (in which case the HTML
output is prefaced with “HTML 4.0,” not 3.2) or for HTML without frames. The initial output for
EGLdoc might be without frames, for inclusion in a doc plugin.

Tags

The next table lists the EGLdoc tags, with reference to Javadoc usage and with an indication

of priority.
Priority Tag Purpose Where available
To identify the
@author developer. Caninclude |Overview document, package
multiple names in one | document, and types.
tag, or multiple tags.
To embed content in
code font and without
processing the content
1 @code as HTML. For example, |All.
@code <p> sShows <p>.
All.
A set of @compat entries are
provided, one after the next. Each
entry has two strings, separated by
a vertical bar: the target followed
To specify compatibility |by the compatibility issue.
1 @compat considerations. Subsequent vertical bars are
processed as text.
The developer should list the
entries in alphabetical order by
target; for example, Java then
JavaScript.
To identify an element
as a candidate for
@deprecated nonsupport. See also All.
@obsolete.
To allow linking to a file
higher in the hierarchy
of destination folders.
@docroot Such a file might be a All
company-specific logo
or copyright statement.
1 @example To identify content that | All; but most important for types

Priority

Tag

Purpose

Where available

goes under the
“Example use” header.
The tag does not
automatically reference
a file.

@example is a
proposed tag in Javadoc
and would be useful to
groups that want to
explain their tech clearly.

Here is a discussion:
http://bugs.sun.com/bug
database/view_bug.do?
bug_id=4075480.

And here, for tutorials:
http://bugs.sun.com/bug
database/view_bug.do?
bug_id=4125834

and functions. The developer
might reference tutorials.

@link

To provide an in-line
hyperlink rather than a
hyperlink in a “See all”
list, as is the case for

@see.

The Javadoc tag only
supports linking to a
package, class, or
member.

All. Could support all the @see

forms.

@literal

To embed content in
regular font and without
processing the content
as HTML. For example,
@code <p> shows <p>.

All.

@obsolete

To indicate that a
construct is no longer
supported though it
remains in place.
@obsolete is a
proposed tag in
Javadoc. See also
@deprecated.

All.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4125834
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4125834
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4125834
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4075480
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4075480
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4075480

Priority

Tag

Purpose

Where available

@operation

To indicate that an EGL
function is converting
data and is invoked by
use of an operator.

Function and function prototypes.

@param

To state the purpose of
a parameter and its
range of argument
values.

Functions and function prototypes.

@return

To state the purpose
and range of a return
value.

Functions and function prototypes.

@see

To provide a hyperlink in
a “See all’ list rather
thanin line, as is the
case for @link.

All. The Javadoc tag has several
forms, and that spec has additional
detail on how the compiler
resolves references to types and
members.

@since

To indicate when a
capability was
introduced to an
application.

Types, fields, methods, functions,
function prototypes.

@throws

To indicate that a
function throws an
exception. If a function
throws an exception that
is not represented in a
@throws tag, the
exception is listed,
without a description, in
a “Throws” section of
the output doc.

Functions, function prototypes.

@todo

To document what work
is yet to be done.

@todo is a proposed tag
in Javadoc.

All.

@value

To display the value of a
constant, either in the
context of that constant
or elsewhere.

Javadoc shows the
collected values in a

Fields

Priority Tag Purpose Where available

page like this:

http://w3.java.ibm.com/j
aval/docs/java7/api/cons
tant-values.html

@version The current software Package overview, and types.
version, not the version
shown in @since.

The following Javadoc tags are probably excluded:

@exclude (a proposed tag), which identifies content to be excluded from the generated
output. Not sure why you wouldn't leave this decision to the invocation command.

Here are further details:
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4058216

@index (a proposed tag), which specifies terms for use in a generated index. Few
developers would use this, but the EDT project could. An alternative is to include index
terms in a doc database that includes EGLdoc and topics, along with cross-reference
links and possibly abstracts of the content.

@internal (a proposed tag), which indicates that the content is for a company's internal
use. Is similar to @exclude and is in some Javadoc implementations.

Here are further details:
http://bugs.sun.com/bugdatabase/view bug.do?bug id=4102647

The following Javadoc tags are excluded:

@category (a proposed tag), which identifies grouped values.
@exception, which gives details on class exceptions but is an alias of @throws.

@inheritDoc, which retrieves data from elsewhere. Has one use that might make sense
now or soon (when a method in a class overrides a method in an interface) and one use
that is not current (when a method in a class or interface overrides a method in a
superclass or superinterface).

@linkplain, which is the same as @link but does not show the link in a fixed font.
Couldn't the content of the @link tag indicate whether a font is needed? For the most

part, we don't want tags that are specific to a kind of presentation. Also, couldn't the
developer add @code tags if the font were needed, or @literal if not?

@serial, @serialData, and @serialField, which concern serialization.

@threadsafety, which indicates whether a class or method is thread safe.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4102647
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4058216
http://w3.java.ibm.com/java/docs/java7/api/constant-values.html
http://w3.java.ibm.com/java/docs/java7/api/constant-values.html
http://w3.java.ibm.com/java/docs/java7/api/constant-values.html

* (@tutorial (a proposed tag), which is specific to the Java tutorial and is fulfilled for EGL by
use of the @example tag.

Javadoc does not include an @event tag, but later versions might list events based on an
analysis of the code.

Someone used a @description tag in early EDT files, but the tag is unnecessary.

Last, any Javadoc user can add a block tag by including the -tag option on the command line.
The practice should be made available to EGLdoc users, too.

10

Output

Choices for output:

They might be more-or-less consistent with Javadoc or the Android variant:

http://docs.oracle.com/javase/7/docs/api/index.html?java/util/ArrayList.html

http://developer.android.com/reference/android/appwidget/AppWidgetHost.html

They might mimic the reference-page templates now used in the EDT language
reference. Those templates are consistent with standards that are typical for Eclipse doc;
and, in this case, the HTML frames would be provided by Eclipse or by the Eclipse online
Info Center, not by the output of the EGLdoc tool.

Here's something, though. Tim Wilson points to the following site:

http://docs.sencha.com/ext-js/4-0/#!/api/Ext.data.proxy.Ajax

EGLDoc output includes the following kinds of content:

A list of all packages.

A list of all types within a package.
Package name.

Type name.

Kind of type; for example, annotation (a Record type), stereotype (a Record type),
Handler type, and so forth.

Type detail; sometimes the code itself, or the main features.

A description of each field in the type.

Example.

For stereotypes, a list of member annotations, with links to the annotation page.
Comments, for additional background.

Compatibility, to describe differences by output language.

Links to overview and, in some cases, task material.

The next sections give examples of EDT topics and the related HTML now being produced by
DITA OT, including anchor tags that are specific to Eclipse. [How would references to other
EGLdoc files be structured?] The output for user-defined records, services, and so forth
would be similar, with template-based categories and tables.

11

http://docs.sencha.com/ext-js/4-0/#!/api/Ext.data.proxy.Ajax
http://developer.android.com/reference/android/appwidget/AppWidgetHost.html
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/ArrayList.html

Records

The EGLdoc output is different for the following kinds of Records: Records other than

annotations, annotations other than stereotypes, and stereotypes.

Records other than annotations

Assume the following EGL source input:

package example.com.mydata;

/**
* CustomerType identifies the attributes of a customer.
*

* This statement is a comment.
*

*/
Record CustomerType {@Table {catalog = "MyCat", Name = "My Table",
schema = "MySchema", shortName = "A"}}

/**
* The customer name.
*

*/
name string {@ExternalName{"the_name"}};

/**
* The customer number.
*

* Is unique across all our divisions.
*/

number int;

/**
* A list of purchasing agents and their contact information.
*
*/
purchasers Person|];
end

Here is the displayed output, followed by the XHTML.:

CustomerType Record
CustomerType identifies the attributes of a customer.
Type stereotype

Mone.

Type annotations
@Iable { catalog = "MyCat”, Name = "My_Table", schema = "MySchema”, shortName ="A"}

EGL package name

example.com.mydata

Record fields

name String
The customer name.

Field annotations:

@Externallame { value = "the_name" }

number Int
The customer number.

Is unique across all our divisions.

purchasers Person []

Alist of purchasing agents and their contact information.

Comments

This statement is a comment.

[might have a compatibility table, as shown in later examples.]

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html xml:lang="en-us" lang="en-us">

<head>
<!-- have not looked into the meta tags too deeply;
but the ones here are used in Eclipse. -->

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"></meta>
<meta name="DC.Type" content="topic"></meta>

<!-- from the type and its category -->

<meta name="DC.Title" content="CustomerType Record"></meta>

<!-- the next two come from the first paragraph -->

<meta name="abstract" content="CustomerType identifies the attributes of a
customer. "></meta>

<meta name="description" content="CustomerType identifies the attributes of a

customer."></meta>

13

http://www.w3.org/TR/html4/loose.dtd

<!-- the next two are used for search, not indexing -->

<meta name="DC.subject" content="CustomerType"></meta>
<meta name="keywords" content="CustomerType"></meta>

<meta name="copyright" content="(C) Copyright 2011, 2012" type="primary"></meta>
<meta name="DC.Rights.Owner" content="(C) Copyright 2011, 2012"
type="primary"></meta>

<meta name="DC.Format" content="XHTML"></meta>

<!-- is unique among pages: the fully qualified type -->

<meta name="DC.Identifier" content="example.com.mydata.CustomerType"></meta>
<meta name="DC.Language" content="en-us"></meta>

<!-- assumes continued use of the CSS now in the help system -->
<link rel="stylesheet" type="text/css"

href="style/commonltr.css"></link>

<!-- if the type is a Record that is not stereotyped as an annotation, entitle the
page with the type name and the word "Record" -->

<title>CustomerType Record</title>

</head>

<body>

<hl class="title topictitlel">CustomerType Record</hl>
<div class="body" id="body">

<!-- from the first paragraph in the EGLDoc description -->
<p class="shortdesc"><span

class="keyword kwd">CustomerType identifies the attributes of a
customer.</p>

<!-- start list -->
<dl class="dl" id="main">

<dt class="dt dlterm"><a name="typestereo"Type stereotype</dt>

<!-- from type definition -->
<dd> <p class="p">None.</p>
<p class="p"></p>

</dd></dt>

<!-- if multiple annotations, separate them with empty paragraphs -->
<dt class="dt dlterm"><a name="typeanno"Type annotations</dt>

<dd>

14

<!-- from type definition. Leave a single space between the curly bracket and

content, on each side, and ensure commas and single spaces are used internally. -->
@Table { catalog = "MyCat", Name = "My Table",
schema = "MySchema", shortName = "A" }

<p class="p"></p>

</dd></dt>

<dt class="dt dlterm">EGL package name</dt>

<!-- from the package statement and some naming convention for file access -->

<dd class="dd"><p class="p">example.com.mydata</p></dd>

<dt class="dt dlterm">Record fields</dt>

<!-- is the destination for EGLDoc comments that precede Record fields.

Include the last <p class="p"></p>, whether or not the content is supplied, but
include "None" if none. -->

<dd class="dd"><dl class="dl parml"><p class="p"></p>
<dt class="dt pt dlterm"><span class="keyword

kwd">name

<!-- uses the Estring definition, calls it String. do an equivalent type renaming
when refering to any of the EGL simple-type definitions -->
String</dt>

<dd class="dd pd">The customer name.

<!-- automatically handle field annotations, each separated from the next by a
paragraph -->

<p class="p"></p>
Field annotations:
<dl dlterm><dt class="dt"></dt>

<dd class="dd">@ExternalName { value =
"the name" }</dd><p class="p"></p></dl></dd>

<dt class="dt pt dlterm"><span class="keyword
kwd">number

Int
</dt>

<dd class="dd pd"><class="p">The customer number.

<p class="p">Is unique across all our divisions.</p>

<p class="p"></p></dd>

<dt class="dt pt dlterm"><span class="keyword

15

kwd">purchasers
Person []</dt>
<dd class="dd pd">A list of purchasing agents and their contact information.

</dd></dd>

<!-- after the two </dd> end tags -->
<p class="p"></p>

<!-- from paragraphs that come after the first and that precede either the first
EGLDoc tag or (if no tags) the end of the initial EGLDoc comment. Ensure the
presence of <p></p>, whether or not the content is supplied. -

<dt class="dt dlterm">Comments</dt>

<dd class="dd">This statement is a comment.</dd>

<!-- for potential additions of links in a postprocess. -
<anchor id="related links"></anchor>

</div>
</body>
</html>

Annotations other than stereotypes

Assume the following EGL source input:

package eglx.xml.binding.annotation;

*

/
XMLAttribute provides details for a Record field
that represents an XML attribute.

This statement is a comment.

@compat Java | No issues.

@compat JavaScript | No issues.

ok ok X X X X X % %

@example See <a href=

"www.eclipse.org/edt/helptop/org.eclipse.edt.core.doc.lr/topics/redt00254.html">

”"Correspondence between an XML string and an EGL variable.”
*

*

*/
Record XMLAttribute type Annotation
{ targets = [ElementKind.fieldMbr]}
/**

16

http://www.eclipse.org/edt/help/

* The name of the XML attribute.
*

* If you are writing a record to an XML string...
*/
name string = "##default";
/**
* The XML namespace associated with the XML attribute. Note:
*
* abc </1i>
* def </1i>
*
*
* When reading an XML string...
*/
namespace string = "##default";
/**
*
* Indicates whether the attribute must be specified in the XML.
*
*/
required boolean = false;
end

17

Here is the displayed output, followed by the XHTML.:

XMLAttribute annotation
XMLAttribute provides details for a Record field that represents an XML attribute.
EGL package name

gglexml binding.annotation

Example use

See Correspondence between an XML string and an EGL variable.

Annotation detail

Record XMILAttribute type Annotation [targets =
[ElementKind.fieldMbr]}

name atring = "#Fdefault”;

namespace string = "#fdefault”;

required boolean = false;
end

Annotation fields

name String
The name of the XML attribute. The default value is the name of the record field.

If you are writing a record to an XML string...
namespace String

The ¥ML namespace associated with the XML attribute_ If Note:
« abc
o def

When reading an XML string. ..

required String
Indicates whether the attribute must be specified in the XML.

Comments

This statement is a comment.

Compatibility
Target Issue
Java Mo issuss.
JavaScript Mo issues.
[late change: include no “Annotation detail” section. Instead, place a section

(in the same place) named “Annotation targets” and identify the targets, one
paragraph after the next. Add <p class="p”</p> in between them and at the end.]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html xml:lang="en-us" lang="en-us">
<head>

<!-- have not looked into the meta tags too deeply;
but the ones here are used in Eclipse. -->
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"></meta>

18

<meta name="DC.Type" content="topic"></meta>

<!-- from the type and its category -->
<meta name="DC.Title" content="XMLAttribute annotation"></meta>

<!-- the next two come from the first paragraph -->

<meta name="abstract" content="XMLAttribute provides details for a Record field
that represents an XML attribute."></meta>

<meta name="description" content="XMLAttribute provides details for a Record
field that represents an XML attribute."></meta>

<!-- the next two are used for search, not indexing -->

<meta name="DC.subject" content="XMLAttribute, EGL annotation,
annotations"></meta>

<meta name="keywords" content="XMLAttribute, EGL annotation,
annotations"></meta>

<meta name="copyright" content="(C) Copyright 2011, 2012" type="primary"></meta>
<meta name="DC.Rights.Owner" content="(C) Copyright 2011, 2012"
type="primary"></meta>

<meta name="DC.Format" content="XHTML"></meta>

<!-- is unique among pages: the fully qualified type -->
<meta name="DC.Identifier"
content="eglx.xml.binding.annotation.XMLAttribute"></meta>
<meta name="DC.Language" content="en-us"></meta>

<!-- assumes continued use of the CSS now in the help system -->
<link rel="stylesheet" type="text/css"
href="style/commonltr.css"></link>

<!-- if the type is a Record that is stereotyped as an annotation and that lacks
the @Stereotype annotation, entitle the page with the type name and the word
"annotation" -->

<title>XMLAttribute annotation</title>

</head>

<body>

<hl class="title topictitlel">XMLAttribute annotation</hl>

<div class="body" id="body">

<!-- from the first paragraph in the EGLDoc description. Use of type name (with
first-letter capped) causes use of the CSS keyword kwd class. -->

<p class="shortdesc"><span

class="keyword kwd">XMLAttribute provides

details for a Record field that represents an XML attribute.</p>

<dl class="dl" id="main">
<dt class="dt dlterm">EGL package name</dt>

<!-- from the package statement and some naming convention -->

<dd class="dd"><p class="p">eglx.xml.binding.annotation</p>
</dd>

<dt class="dt dlterm">Example use</dt>

<!-- from the @example tag. Even if no such tag is present, include <p
class="p"></p>. -->

19

<dd class="dd"><p class="p">See

Correspondence between an XML string and an EGL variable.</p>

</dd>

<dt class="dt dlterm">Annotation detail</dt>

<!-- is the definition itself, minus any comments embedded there -->
<dd class="dd"><pre class="pre codeblock">Record XMLAttribute type Annotation
{targets =
[ElementKind.fieldMbr]}
name string = "##default";
namespace string "##default";
required boolean = false;
end</pre>
</dd>
<dt class="dt dlterm">Annotation fields</dt>

<!-- is the destination for EGLDoc comments that precede annotation fields.
Include the last <p class="p"></p>, whether or not the content is supplied. -->
<dd class="dd"><dl class="dl parml"><p class="p"></p>

<dt class="dt pt dlterm"><span class="keyword
kwd">name

<!-- uses the Estring definition, calls it String. do an equivalent type
renaming when refering to any of the EGL simple-type definitions -->
String

</dt>

<dd class="dd pd">The name of the XML attribute. The default value is the name
of the record field.<p class="p">If you are writing a record to an XML
string...</p>

</dd>

<dt class="dt pt dlterm"><span class="keyword
kwd">namespace

String</dt>

<dd class="dd pd"><div class="p">The XML namespace associated with the XML
attribute. If

Note:

<ul class="ul">

<1i class="1li">abc</1i>

<li class="1i">def</1i>

</div>

<p class="p">When reading an XML string...</p>

</dd>

<dt class="dt pt dlterm"><span class="keyword
kwd">required

String</dt>

<dd class="dd pd">Indicates whether the attribute must be specified in the
XML. </dd>

</dl><p class="p"></p>

</dd>

<!-- from paragraphs that come after the first and that precede either the first
EGLDoc tag or (if no tags) the end of the initial EGLDoc comment. Ensure the

20

presence of <p></p>, whether or not the content is supplied. -->
<dt class="dt dlterm">Comments</dt>
<dd class="dd">This statement is a comment.</dd>

<!-- from the set of Qcompat tags, in developer-specified order (should be
alphabetic) . Ensure the presence of <p></p>, whether or not the content is
supplied; but include “None” if none.-->

<dt class="dt dlterm">Compatibility</dt>

<dd class="dd"><p class="p"></p>

<div class="tablenoborder"><table cellpadding="4" cellspacing="0" summary=""
id="compat table" class="table" frame="border" border="1"

rules="all">

<thead class="thead" align="left">

<tr class="row" valign="bottom">

<th class="entry" valign="bottom" width="20%">Target</th>

<th class="entry" valign="bottom" width="80%">Issue</th></tr>

</thead>

<tbody class="tbody">

<tr id="compat java" class="row">

<td class="entry" valign="top" width="20%">Java</td>

<td class="entry" valign="top" width="80%">No issues.</td>

</tr>

<tr id="compat javascript" class="row">

<td class="entry" valign="top" width="20%">JavaScript</td>

<td class="entry" valign="top" width="80%">No issues.</td>

</tr>

</tbody>

</table>

</div>

</dd>

</d1l>

</div>

<!-- for potential additions of links in a postprocess. -->
<anchor id="related links"></anchor>

</body>

</html>

Stereotypes

Assume the following EGL source input:

package eglx.persistence.entity

*

/
Entity indicates that a Record, Handler, or External type
represents a value that can be persisted and that

might be related to other such values.

This statement is a comment.

@compat Java | No issues.

P S . R S

* @compat JavaScript | No issues.
*

* @example See <a href=

"www.eclipse.org/edt/helptop/org.eclipse.edt.core.doc.lr/topics/redt00081.html">

SQL example.
*

*
*/
Record Entity type Annotation {

targets = [ExternalTypePart, RecordPart,

@Stereotype {
memberAnnotations = [OneAnno,

}

/**

* Enables...
*

* Moreover. ..
*/

name string = "##default";

*

/
Correlates two details:

the first</1li>
the second</1li>

PO . . R S

~

namespace string = "##default"
end

If the correlation enables...

TwoANno|

HandlerPart

i

22

http://www.eclipse.org/edt/helptop/org.eclipse.edt.core.doc.lr/topics/redt00081.html

Here is the displayed output, followed by the XHTML:

Entity stereotype

Entity indicates that a Record, Handler, or External type represents a value that can be persisted and that might be
related to other such values.

EGL package name
eqglx.persistence
Example use

See SOL example.
Stereotype detail

Record Entity type Annotation |
targets = [ExternalTvyvpePart, RecordPart, HandlerPart],
@Stereotype |
memberAnnotations = [Oneknno, Twolnno]
1
}

end
Stereotype fields

name String
Enables...

Mareaover...
namespace String

Correlates two details:
o the first
o the second

[f the correlation enables.

Annotations for each member field

« OnefAnno
« TwoAnno

Comments

This statement is a comment.

Compatibility
Target Issue
Java Mo izsues,
JavaScript Mo izsues,
[late change: 1include no “Stereotype detail” section. 1Instead, place a section

(in the same place) named “Annotation targets” and identify the targets, one
paragraph after the next. Add <p class="p”</p> in between them and at the end.]

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0org/TR/html4/loose.dtd">
<html xml:lang="en-us" lang="en-us">

23

<head>

<!-- have not looked into the meta tags too deeply;

but the ones here are used in Eclipse. -->
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"></meta>
<meta name="DC.Type" content="topic"></meta>

<!-- from the type and its category -->
<meta name="DC.Title" content="Entity stereotype"></meta>

<!-- the next two come from the first paragraph -->

<meta name="abstract" content="Entity indicates that a Record, Handler, or
External type represents a value that can be persisted and that might be related
to other such values."></meta>

<meta name="description" content="Entity indicates that a Record, Handler, or
External type represents a value that can be persisted and that might be related
to other such values."></meta>

<!-- the next two are used for search, not indexing -->

<meta name="DC.subject" content="Entity, EGL stereotype, stereotypes"></meta>
<meta name="keywords" content="EGL stereotypes, Entity, Entity stereotype,
Record classifier, ExternalType classifier, Handler classifier"></meta>

<meta name="copyright" content="(C) Copyright 2011, 2012" type="primary"></meta>
<meta name="DC.Rights.Owner" content="(C) Copyright 2011, 2012"
type="primary"></meta>

<meta name="DC.Format" content="XHTML"></meta>

<!-- is unique among pages: the fully qualified type -->
<meta name="DC.Identifier" content="eglx.persistence.Entity"></meta>
<meta name="DC.Language" content="en-us"></meta>

<!-- assumes continued use of the CSS now in the help system -->
<link rel="stylesheet" type="text/css"
href="style/commonltr.css"></link>

<!-- if the type is a Record that is stereotyped as an annotation, and if the
@Stereotype annotation is present, entitle the page with the type name and the
word "stereotype" -->

<title>Entity stereotype</title>

</head>

<body>

<hl class="title topictitlel">Entity stereotype</hl>
<div class="body" id="body">

<!-- from the first paragraph in the EGLDoc description. Use of type name (with
first-letter capped) causes use of the CSS keyword kwd class. -->

<p class="shortdesc"><span

class="keyword kwd">Entity indicates that a Record, Handler, or
External type represents a value that can be persisted and that might be related
to other such values.</p>

<dl class="dl" id="main">
<dt class="dt dlterm">EGL package name</dt>

<!-- from the package statement -->
<dd class="dd"><p class="p">eglx.persistence</p>

24

</dd>
<dt class="dt dlterm">Example use</dt>

<!-- from the @example tag. Even if no such tag is present, include <p
class="p"></p>. -->

<dd class="dd"><p class="p">See

<a

href="www.eclipse.org/edt/helptop/org.eclipse.edt.core.doc.lr/topics/redt00081.h
tml">

SQL example.</p>

</dd>

<dt class="dt dlterm">Stereotype detail</dt>

<!-- is the definition itself, minus any comments embedded there -->
<dd class="dd"><pre class="pre codeblock">Record Entity type Annotation ({
targets = [ExternalTypePart, RecordPart, HandlerPart],
@Stereotype {
memberAnnotations = [OneAnno, TwoAnno]
}
}
end</pre>
</dd>

<dt class="dt dlterm">Stereotype fields</dt>

<!-- is the destination for EGLDoc comments that precede stereotype fields.
Include the last <p class="p"></p>, whether or not the content is supplied, but
include "None" if none. -->

<dd class="dd"><dl class="dl parml"><p class="p"></p>

<dt class="dt pt dlterm"><span class="keyword
kwd">name

<!-- uses the Estring definition, calls it String. do an equivalent type
renaming when referring to any of the EGL simple-type definitions -->
String

</dt>

<dd class="dd pd">Enables... <p class="p">Moreover...</p>

</dd>

<dt class="dt pt dlterm"><span class="keyword
kwd">namespace

String</dt>

<dd class="dd pd"><div class="p">Correlates two details:
<ul class="ul">

<1i class="1li">the first

<1li class="1i">the second

</div>

<p class="p">If the correlation enables...</p>

<p class="p"></p></dd></dd>

<dt class="dt dlterm">Annotations for each member
field</dt>

<!-- only links to the EGLDoc for each annotation.
Include the last <p class="p"></p>, whether or not the content is supplied, but

25

include "None" if none. -->

<ul class="ul">

<li class="1i">

0OneAnno<a/></1i>
<li class="1i">TwoAnno<a/></1i>

<p class="p"></p></dd>

<!-- from paragraphs that come after the first and that precede either the first
EGLDoc tag or (if no tags) the end of the initial EGLDoc comment. Ensure the
presence of <p></p>, whether or not the content is supplied. -->

<dt class="dt dlterm">Comments</dt>
<dd class="dd">This statement is a comment.</dd>

<!-- from the set of QRcompat tags, in developer-specified order (should be
alphabetic). Ensure the presence of <p></p>, whether or not the content is
supplied.-->

<dt class="dt dlterm">Compatibility</dt>

<dd class="dd"><p class="p"></p>

<div class="tablenoborder"><table cellpadding="4" cellspacing="0" summary=""
id="compat table" class="table" frame="border" border="1"

rules="all">

<thead class="thead" align="left">

<tr class="row" valign="bottom">

<th class="entry" valign="bottom" width="20%">Target</th>

<th class="entry" valign="bottom" width="80%">Issue</th></tr>

</thead>

<tbody class="tbody">

<tr id="compat java" class="row">

<td class="entry" valign="top" width="20%">Java</td>

<td class="entry" valign="top" width="80%">No issues.</td>

</tr>

<tr id="compat javascript" class="row">

<td class="entry" valign="top" width="20%">JavaScript</td>

<td class="entry" valign="top" width="80%">No issues.</td>

</tr>

</tbody>

</table>

</div>

</dd>

</d1l>

</div>

<!-- for potential additions of links in a postprocess. -->
<anchor id="related links"></anchor>

</body>

</html>

26

External types

The web page for an external type has several characteristics of other pages: an
introduction; a type annotation, a package identifier; a field list, if appropriate; comments, a
compatibility table (without a table heading), and the bottommost placeholder for related links.

The table of functions (without a table heading) is structured the same as a compatibility
table.

At this time, constants are not valid in an external type; but that's a bug. Constants should be
listed in a “Constants” section, preceding “Functions” and in the same format as the fields.

JSONLIib external type
JSOMNLib contains functions that copy JSON strings to or from a variable.
Package

eghc.json

Functions

Table 1. Functions
Function Purpose

J50NLib.convertFromJSON copies 3 JSON string to a record, handler, or dictionary.

JEONLib.convertTol SON copies = record, handler, or dictionary to 3 JSON strng.

Comments

JSONLib is implemented as an external type, stereotype NativeType, and not as an EGL library.

Compatibility
Table 2. Compatibility
Target Issue
Java See the function-specific topics.
JavaSeript Ses the function-specific topios.

27

Functions

The web page for a function n external type has several characteristics of other pages: an
introduction; a package identifier; comments; a compatibility table (without a table heading);
and the bottommost placeholder for related links.

The <pre></pre> entry in the syntax section is followed by the definition list (<dI>) tags, as
shown earlier. The EGLDoc @return tag needs to be represented...

JSONLib.convertFromJSON function

JSONLib.convertFromJSON copies a JSON string to a record, handler, or dictionary.
Package
eglx.json
Syntax
static function convertFromJSCH(iscn string in, eglType any const inj:
json
A JSON string.

eg/Type
A record, handler, or dictionary.
Example use
Although the second parameter is declared as ANY type, the EGL runtime verifies that the input is a record, handler, or dictionary.
Because of the declaration, you can use the function in a library function that accepts any type of variable, as in the following
example:

function convert{myRecord MyRecordPart in, recordZPopulate ANY const in)
jaonLib. convertFromJSON (myBecord.data, recordiPopulate);
end

Comments
For other details on the conversion, see “Correspondence between a JSON string and an EGL variable.”

JSONLib.convertFromJSON is the complement of the JSONLib.convertToJSON function.

Compatibility
Table 1. Compatibility
Target lssue
Java Mo issues
JavaScript
The EGL runtime code rounds any numeric data thaf is greater than 15
significant digitz.
[other types must be presented, with a format for function prototypes...]

28

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at www.ibm.com/legal/copytrade.html.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle and/or its affiliates.

Android is a trademark of Google Inc.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product or service names, may be trademarks or service marks of others.

29

http://www.ibm.com/legal/copytrade.html

	Introduction
	Input doc components
	Output format

	Tags
	Output
	Records
	Records other than annotations
	Annotations other than stereotypes
	Stereotypes

	External types
	Functions

	Trademarks

