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eclipse
 IDE – Integrated Development Environment

 Supports several programming languages and paradigms
 C/C++, Java, Scala, PHP, Ruby, COBOL, XML, HTML, etc…
 Very popular as a Java IDE

 Multi-platform
 Runs on Windows, Unix, Mac…

 Its open source
 Its free!

 Eclipse CDT project
 Set of plug-ins that adds full support for developing C/C++ 

applications
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CDT Editor - DEMO



4 © 2012 IBM Corporation; made available under the EPL v1.0

CDT Index

 CDT parses and analyzes your code
 Not just a text editor, eclipse “understands” your code

 CDT “compiles” the code into an index file
 Designed for fast queries and searches

 Example: invoking “open declaration” on a function call will query 
the index to find the location of the declaration

 Index is built when you first create a project (assuming you have 
some existing code)

 Index is incrementally updated every time a file is changed
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CDT Index

 Index stores information about:
 Identifiers and how they relate to each other

• Called bindings
 The locations (source file and offset) of each identifer
 All the macros defined in each file
 The include relationship between files
 TODO comments
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CDT Core
 Preprocessor

 Converts text into a token stream, evaluates #directives and macros
 Parsers (C and C++)

 Converts the token stream in to an AST
 AST

 Visitor API
 AST Rewrite API

 Used to implement refactoring
 Semantic analysis (name resolution)

 Resolves the relationships between identifiers
 Indexer

 Generates and updates the index file by processing the AST
 Index API

 Allows index based tooling to query the index



7 © 2012 IBM Corporation; made available under the EPL v1.0
Image courtesy of Marcus Schorn http://wiki.eclipse.org/Image:Parser-arch.png
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C/C++ Challenges

 Preprocessor
 Extra phase between the lexer and the parser
 Does not have proper imports, instead uses the archaic text based 

#include directive
 Macros, Conditional Compilation, Includes

 C++ is very difficult to parse
 Not LALR(n) for any n
 Rife with ambiguities and subtleties

 Difficult language constructs
 Multiple inheritance
 Templates
 etc...
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C/C++ Challenges

 Two languages to deal with, C and C++
 C is not a proper subset of C++

 Can't always tell which language to use from the file extension
 .h file could be C or C++

 Every C and C++ compiler has is own intricacies
 Slightly different dialects

 Supporting language extensions
 UPC for example

 Performance!
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Editor Framework

 Editor should update its presentation and other related views in real time.
 But, we don't want to re-parse the code in the editor on every keystroke.

 Reconciler thread
 Maintains a countdown timer (very short, ~3 seconds). Every time you type a 

character the timer is reset to zero. When the timer expires a “reconcile 
event” is fired.

 CDT listens for the reconcile event and re-parses the code in the editor
 Processes the AST and updates all the views

 Still, parser needs to be fast!
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C Pre-processor (Cpp)

“In retrospect, maybe the worst aspect of Cpp is that it has stifled 
the development of programming environments for C. The 
anarchic and character-level operation of Cpp makes nontrivial 
tools for C and C++ larger, slower, less elegant, and less effective 
than one would have thought possible.”

 Bjarne Stroustrup in The Design and Evolution of C++ 
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Preprocessor
 An extra phase that runs before the parser

 Include directives
#include <stdio.h>

 Replace the #include directive with the contents of the file stdio.h
 Usually used to include “header” files (that contain only declarations)

 Macros
#define max(x,y) (x) > (y) ? (x) : (y)

 Conditional compilation
#ifdef M

// some code
#else

// other code
#endif
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Preprocessor – Huge problem for accuracy

 Completely text based, no relation to C++ whatsoever...
 Directives can be inserted literally anywhere

 What you see in the editor and what the parser sees are two 
different things.

 Disconnect that doesn't happen with other languages like Java

 In this example conditional compilation directives 
break up a declaration
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Preprocessor – Huge problem for performance

 A “Translation Unit” is assembled from multiple source files
 A seemingly simple file can become huge after the preprocessor runs.

 helloworld.c
#include <stdio.h>
int main() {

    printf("Hello World\n");
}

 $ gcc -E helloworld.c | wc -l
 939

 4 lines of code blows up into 939 lines!
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Preprocessor

 For performance the CDT parser will skip parsing of #include 
directives whenever it can.

 Any macros in the header files that are skipped are still needed 
for an accurate parse.

 Get them from the index!
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Parsing C/C++
 The parser's job is to convert concrete syntax to abstract syntax
 In other words: convert a char[] into a data structure called an 

Abstract Syntax Tree (AST)

 CDT supports two languages: C and C++
 C is not a strict subset of C++, but they do have a lot in common

 Parsers are hand-written recursive descent
 Two parsers, for C and C++, with a common abstract superclass



18 © 2012 IBM Corporation; made available under the EPL v1.0

Ambiguities
x * y;

 Meaning depends on how x and y have been previously declared

 Could be x multiplied by y

int x, y;
x * y;

 Could be declaration of a pointer variable y of type x;

typedef int x;
x *y;
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Ambiguities – The Lexer Feedback Hack

 Well known technique used by compilers, but not by CDT

 Maintain a symbol table during the parse
 When a declaration is parsed enter the declaration into the symbol table

 Allow the lexer to have access to the symbol table
 When the lexer recognizes an identifier it checks the symbol table to 

see if the identifier has been previously declared as a type
 If it has return a typedef-name token
 Otherwise return a normal identifier token

 Grammar rules that expect types use typedef-name token instead of 
identifier token
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Ambiguities – The Lexer Feedback Hack

 Relies on the fact that a normal compiler will evaluate #include 
directives.

 The parser will see all the declarations in scope and enter them 
into the symbol table

 But we can't do that for performance reasons
 Need a different approach
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Ambiguities

 Solution used by CDT: backtracking and ambiguity nodes

 Parser knows when it is starting to parse something that may be 
ambiguous

 Result of exhaustive analysis of grammar

 Does an initial parse looking for one possibility
 Backtracks and re-parses the same tokens looking for the other 

possibility

 If both parses succeed create an ambiguity node in the AST
 Ambiguity node contains a list of sub-trees for each possibility

 AST with ambiguity nodes is called the preliminary AST
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Ambiguities

x * y;
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Backtracking

 The preprocessor runs in tandem with the parser
 Parser calls preprocessor.fetchToken() when it wants to see 

the next token.
 This causes the preprocessor to recognize the next token
 But, the preprocessor checks if the token is a #directive or macro name
 This can cause one token to expand into many tokens

 Preprocessor maintains a linked list of tokens
 If the preprocessor is at the end of the list it will lex the next token, 

otherwise it advances to the next token in the list and returns it
 When the parser wants to backtrack it resets the preprocessor back 

to an earlier token
 Want to do this in a way that doesn't cause too many token objects to 

be kept in memory.
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Ambiguity Resolution

 Job of ambiguity resolution is to pick the correct sub-tree and 
discard the other ones.

 Algorithm is simple.
 For each sub-tree

• Resolve each identifier in context
o Eg: x * y, look for variables x and y to bind.

 Keep the sub-tree that has the least number of binding errors
 If there is a tie, keep the first one

• There is a rule in C++ that if both possibilities are valid then 
choose declarations over expressions.

o just put declarations first
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Parsing Inactive Code
 Parser will attempt to parse inside of inactive code blocks
 Goes into an exploratory parse mode

 Only parses declarations, skips over function bodies
 If the parse goes awry parsing of the block is aborted
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AST + Location Map

 Attached to the AST is a data structure called the Location Map
 Created by the preprocessor

 Records all the substitutions performed by the preprocessor
 Directly used by the Macro Expansion Hover feature

 Each AST node has offset and length fields
 These are PPP offsets: Post-pre-processor

 IE offsets into the token stream, not offsets into the original source
 Location map is a function from 

(ppp-offset) -> (original-offset, original-file)
 Navigate to a node that comes from a macro

 Editor will highlight the macro
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AST
 The AST represents the structure of the source code
 Much of the functionality of CDT editor is based on the AST
 AST node classes for C and C++ are kept in separate packages

 ~90 node classes for C++
 ~60 node classes for C

 Implement common interfaces
 Some algorithms depend 

on the specific type: 
semantic analysis

 Some algorithms only need
the interfaces: outline view
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Building The AST – Abstract Factory Pattern
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Building the AST – Abstract Factory

 Advantages
 Cleaner implementation

• Code for creating nodes was moved from the parser classes to 
separate factory classes.

 Factories are reusable outside of the parser. 
• Used by the CDT refactoring framework.

o IASTTranslationUnit.getNodeFactory()
• Used by 3rd party parsers.

o The UPC parser uses the C node factory.
 Its easy to add new factory implementations in the future.

• For example if ObjectiveC support ever gets added to CDT
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Visitor Pattern
 Design pattern used for tree traversal of the AST

 Don't want to add code for each feature directly to the AST classes
 Don't want code for various features mixed together in the node classes.
 Want a standard easy-to-use API for processing the AST
 3rd parties want to write plug-ins that process the AST.

 Tree traversal the hard way
 Each AST node has several getX() methods to access child nodes

• This can be a cumbersome way to traverse the tree

 We want to decouple the data from the operations that process the data.
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Visitor Pattern
 Create a visitor object

• Must extend ASTVisitor
• ASTVisitor has several overloaded visit(IASTXXX)methods for each 

node type
• Override the visit methods for the node types that you care about

 Each node class has an accept(ASTVisitor)method (defined in IASTNode)
• Calls visit(this)
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AST Visitor
 Example of an accept method in a node that has children.
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AST Visitor
 Example of a simple visitor that collects all the name nodes (identifiers) in 

the AST
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Tree Traversal
 Tree traversal, two variations

 1) The visitor controls the traversal order → visitor calls accept()
• More flexible, supports complex traversals
• Requires more code in the visitor
• Traversal code may end up duplicated in each visitor

 2) The AST controls the traversal order → nodes call accept()
• Less flexible 
• Easier to implement the visitor if the standard traversal order is acceptable.

 CDT uses option 2
 A depth-first traversal order is hard-coded into the AST

• This is by far the most common traversal order
 The API does provide some control over what nodes to visit
 It is still possible to write a visitor that has complete control over traversal order.
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Desugaring
 Syntactic Sugar

 Syntax that is equivalent to some other syntax in 
the language but is more convenient or compact.

• i++;
• i += 1;
• i = i + 1;

 Desugaring
 The parser produces the same AST fragment
 Convenient for code generation.

 AST produced by IDE cannot be desugared.
 The AST needs to represent exactly what is in 

the user's source.
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Comments

 Comments are preserved in the AST
 Available as a flat list of “comment nodes”

 Refactorings that move code around need to move the 
comments too

 Special comments are recognized
 TODO comments

• Stored in the index
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Content Assist

 User can type part of a statement and then get a list of possible 
completions.

 The user has not finished typing the statement
 This is a syntax error!

 Parser must:
 Recover from the syntax error
 Unwind the parse stack
 Return a “completion node”, used to compute the list of proposals
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Content Assist – The Preprocessor's Job

 Two special types of tokens
 Completion token
 End-of-completion token

 The offset of the cursor position is given to the preprocessor
 When the offset is reached the preprocessor returns a 

Completion token
 Similar to an identifier token
 If the user typed part of an identifier the token will contain this text

 Stops processing the input character stream and starts 
indefinitely returning End-of-completion tokens
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Content Assist – The Parser's Job

 Parser will accept a Completion token anywhere an identifier token 
would be legal

 The only difference is that a Completion token alerts the parser to 
generate an extra side-effect: creating a completion node

 Will backtrack and re-parse to cover potential ambiguities.
 Will get a completion node for every possibility

 End-of-completion tokens allow the parser to complete successfully

 An End-of-completion token will match punctuation that can be used 
to end statements and close expressions and scopes, including semi-
colons, closing parenthesis, closing braces and others
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Content Assist - Example

int s = sizeof(f<ctrl-space>

 preprocessor produces the following token stream

int, identifier, assign, sizeof, left-paren, completion, 
end-of-completion, end-of-completion...

 which the parser will interpret as

int, identifier, assign, sizeof, left-paren, identifier, 
right-paren, semi-colon 
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The End

 References
 CDT Project home page: http://eclipse.org/cdt/
 CDT Wiki: http://wiki.eclipse.org/CDT
 Download eclipse and CDT: http://www.eclipse.org/downloads/
 Lexer Feedback Hack: http://en.wikipedia.org/wiki/The_lexer_hack

http://eclipse.org/cdt/
http://wiki.eclipse.org/CDT
http://www.eclipse.org/downloads/
http://en.wikipedia.org/wiki/The_lexer_hack
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