
Jens Kübler
Automated GUI Tests with SWTBot



Overview

Introduction
Requirements for GUI tests
Live Execution
Concepts
Code Example
Conclusion



Tradeoffs for automated GUI tests

 Manual testing vs. automated testing
– Outcome: User „noise“ vs. precise results
– Low frequency vs. daily (or more) builds
– Error detection vs. regression

 Time to create a test + time to maintain it



Requirements to GUI tests 1/2

 Tight integration
– Use JUnit to execute
– Use Eclipse launching facilities
– Use Plugin infrastructure
– Dock to SWT

 Usability
– Maintainable !
– Readability
– Abstractions



Requirements to GUI tests 2/2

 Extensible
– Custom SWT Controls
– Custom search strategies within the UI

 Continious Integration
 I18n



Show me what you got



Concepts : Finding SWT Controls 1/2

 Commonly used functionality built-in SWTBot
– Example: Checkbox

 Optional to define IDs for controls in ambiguous  
situations

 I18N : Resource bundles



Concepts : Finding SWT Controls 2/2

 Advanced search strategies through matchers
 Extend BaseMatcher or AbstractMatcher
 Example: WithText<T> matcher

 Matcher quantifiers: AllOf<T>, AnyOf<T>, ...



Concepts : Test Execution Flow 1/2

 Separate launcher (vs. PDE launcher)
 Runs in a non-UI thread

– Pros
• Non blocking
• Sending events to UI (i.e. close blocking  dialogs)

– Cons
• Threading issues
• Additional tweaks for headless testing



Concepts : Test Execution Flow 2/2

 Solutions to threading issues
1) Send thread to sleep an arbitrary time

• Bad because timing is tied to the test case
• What if the amount of time does work only for some 

systems?

2) Let SWTBot handle this issue
• Defines a default search timeout
• Central point for specifying timeout behaviour
• Can be modified for the machine it is running on

• Use Interface ICondition



Concepts : Domain & Page Objects 

 Domain Objects : Encapsulate Domain functionality
– Create a project
– Compile a Java project

 Page Objects : Encapsulate UI functionality
– How to click a button
– How to navigate to a menu
– Hold and expose the (error) state of UI elements
– Examples

• Menu
• Specific View i.e. Navigator



Additionals Features and Missing Items

 Features
– Screenshots in tests
– Integration for headless build
– Extensible for custom controls
– Spy View for inspecting SWT Controls (Shift+CTRL)
– Logging via Log4J

 Missing
– Not all SWT controls supported yet
– Good documentation
– No support for native dialogs (i.e. FileDialog, Print)



Code Example



Conclusion

 Promising framework for GUI testing with Eclipse
 Very intuitive
 Extensible because of open source
 Still incubation
 Some more additional libs/jars required
 SWTBot 4GEFnot integral part of SWTBot, yet



Links

 SWTBot : http://www.eclipse.org/swtbot/
 SWTBot4GEF : 

http://code.google.com/p/swtbot4gef/
 Aquintos : www.aquintos.com

http://www.eclipse.org/swtbot/
http://code.google.com/p/swtbot4gef/


Contact details

Thank you very much for your attention!

Dipl-Inf. Jens Kübler
Software Engineer
mail: kuebler@aquintos.com

© aquintos GmbH 2009 – All rights reserved

aquintos GmbH
Lammstrasse 21
76133 Karlsruhe, Germany

phone +49 (0) 721 51638-0
fax +49 (0) 721 51638-38

info@aquintos.com
www.aquintos.com



Currently unsupported SWT Controls

Button Arrow  

Browser 
Canvas 

Composite 
CTabFolder 

Link
ProgressBar 
Sash

Scale
ScrolledComposite

Slider
Spinner

TabFolder


	Insert the title of your  presentation here
	Introduction
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Contact details
	Folie 17

